
RATIONAL DILATION
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0.1. Introduction. Hi, I’m here to talk to you today, about the rational
dilation problem.

1. T R D P

1.1. Basics. Firstly, what is a dilation? If we’ve got some Hilbert space
operator T ∈ B(K), a dilation of T is an operator S ∈ B(H) (where H is a
Hilbert space containing K), such that

PKS|K = T .

Here, PK denotes the projection onto K, and |K denotes the restriction to K.
Equivalently, a dilation is something that looks like

S =


· · ·

· T ·

· · ·


If we’ve got some compact X ⊆ C, we say that an operator T ∈ B(K) has

a rational ∂X-dilation, if there exists a bigger Hilbert space H ⊇ K, and a
normal operator S ∈ B(H), such that σ(S) ⊆ ∂X, and for all r ∈ R(X),

PK r(S)|K = r(T)

So, what does that mean? For S to be a rational ∂X-dilation, rather than
just a dilation, we also need that S is normal, σ(S) ⊆ ∂X, and that

r(S) = r


· · ·

· T ·

· · ·

 =


· · ·

· r(T) ·

· · ·


for all r ∈ R(X).

The idea behind a dilation is to take a badly behaved operator, and find
a larger, better behaved operator, that has our badly behaved operator as
a block on its diagonal (normal operators are particularly well behaved).
So, when we go further, and look for a rational ∂X-dilation, we’re looking
for a dilation that dilates not just our operator, but rational functions of
our operator too. I should also say that, although the condition about the
spectrum of S looks kinda arbitrary, it actually falls out of the theory quite
naturally.

Now, von Neumann showed that if T has a rational ∂X-dilation, then
1
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(1) σ(T) ⊆ X, and
(2) for all r ∈ R(X), ‖r(T)‖B(K) ≤ ‖r‖C(X)

The latter is the famous von Neumann inequality. We say that X is a spectral
set for T when both these conditions hold, so “X is a spectral set for T” is a
necessary condition for “T has a rational ∂X-dilation”.

So, a natural question to ask is, “Is it condition sufficient?”, which leads
to the rational dilation conjecture:

Conjecture. An operator T ∈ B(H) has a rational ∂X-dilation, if and only if X is
a spectral set for T.

1.2. Sz.-Nagy’s Dilation Theorem. A classical result in this field is Sz.-
Nagy’s dilation theorem ([Pau02, Thm. 4.3]). Sz.-Nagy looked at the special
case where X is the unit disc, D, with boundary T, the unit circle.

In this case, our definitions have some nice equivalent statements. Saying
D is a spectral set for T, is the same as saying that ‖T‖ ≤ 1, that is, T is a
contraction. Also, S is normal and has spectrum on T, if and only if S is
unitary. So, it’s enough to show that all contractions have a rational unitary
dilation.

To do this, first, we show that every contraction has an isometric dilation,
so every contraction dilates to an isometry. We know that if DT = (1−T∗T)1/2,
then

‖Tx‖2 + ‖DTx‖2 = 〈Tx,Tx〉 + 〈DTx,DTx〉

= 〈T∗Tx, x〉 +
〈
D2

Tx, x
〉

=
〈(

T∗T + D2
T

)
x, x

〉
= 〈Ix, x〉 = ‖x‖2

so if we define

V :=



T 0 0 0 · · ·

DT 0 0 0
. . .

0 I 0 0
. . .

0 0 I 0
. . .

...
. . .

. . .
. . .

. . .


then

‖Vx‖2 = ‖Tx1‖
2 + ‖DTx1‖

2︸               ︷︷               ︸
‖x1‖

2

+ ‖x2‖
2 + ‖x3‖

2 + · · · = ‖x‖2

so we can see that this is an isometry. Also, because the operator is lower
triangular, we can see that

r(V) =

 r(T) ·

· ·
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The next thing to do is show that every isometry has a unitary dilation.
If we define

U =

(
V I − VV∗

0 V∗

)
then we can show that U is unitary, and because it’s upper triangular,

r(U) =

 r(V) ·

· ·

 =


r(T) · ·

· · ·

· · ·


so U is a normal T-dilation of T, so T has a normal T-dilation.

A generalisation of this result, due to Berger, Foias and Lebow ([Pau02,
Thm. 4.4]), shows that the rational dilation conjecture also holds whenever
our region X ⊆ C is simply connected – that is, whenever X has no holes.

1.3. Completely bounded maps. Most modern approaches to rational di-
lation are based on completely bounded maps – Arveson showed that the
rational dilation conjecture was equivalent to a result about completely
bounded maps.

First, note that we can define a homomorphism π : R(X)→ B(K) by

π(r) = r(T)

We can then see that for X to be a spectral set for T, we need

‖π(r)‖B(K) = ‖r(T)‖B(K) ≤ ‖r‖C(X)

but this is the same as saying ‖π‖ ≤ 1, thinking about π as a linear map, and
using the standard norm for linear maps. So, we know that if X is a spectral
set for T, this is the same as saying π is contractive.

Now, we’d like to find some way of describing rational ∂X-dilations in
terms of π too, and to do this, we need to define completely contractive maps.

Suppose we have two C∗-algebras, C and C′, a vector subspace M ⊆ C′,
and a bounded linear map φ : M→ C. We can then define C∗-algebras MnC
and MnC′, which consist of n × n matrices, whose elements come from C
and C′, so

MnC :=




c11 . . . c1n
...

. . .
...

cn1 . . . cnn

 | ci j ∈ C for all i j


We can then define a linear map φn : MnM→MnC by

φn


m11 . . . m1n
...

. . .
...

mn1 . . . mnn

 =


φ(m11) . . . φ(m1n)
...

. . .
...

φ(mn1) . . . φ(mnn)





4 JAMES PICKERING

F 1.1. Planar domains with various numbers of holes

We know that for each n ∈ N, φn is a bounded linear operator, and so we
define the complete norm of φ by∥∥∥φ∥∥∥cb := sup

n∈N

∥∥∥φn
∥∥∥

We say thatφ is completely bounded if
∥∥∥φ∥∥∥cb < ∞, andφ is completely contractive

if
∥∥∥φ∥∥∥cb ≤ 1.
Another useful idea is complete positivity. We say a map is completely

positive if φn is positive for all n.
Arveson proved that rational dilation was equivalent to a number of

other conditions:

Theorem. The following are equivalent:

(1) T has a rational ∂X-dilation
(2) The homomorphism π : R(X)→ B(K) is completely contractive
(3) The homomorphism π̃ : R(X) + R(X)→ B(K) is competely positive.

The rational dilation question then becomes: if π is contractive, does that
mean it’s completely contractive?

1.4. Multiply connected domains. We’re interested in spaces that are not
simply connected. We say a compact set X ⊆ C is an n-holed domain if its
boundary, ∂X, has n + 1 components; this is kinda unintuitive, but if we
look at Figure 1.1, we can see that this is really just the same as saying X
has n holes in it.

Agler showed that if X is a 1-holed domain with smooth boundary,
then the rational dilation conjecture holds ([Agl85]). However, later work
showed that the rational dilation conjecture doesn’t hold on 2-holed do-
mains: Agler, Harland and Raphael ([AHR08]) found an example of a
2-holed domain X and an operator T (in fact, their operator was just a 4× 4
matrix), that fails the conjecture on X. Dritschel and McCullough then went
on to show that if we have any 2-holed domain X, with smooth boundary,
then there exists an operator T, that fails the conjecture on X ([DM05]).

It’s suspected that that the rational dilation conjecture doesn’t hold on
any 2-or-more-holed domain, but Dritschel and McCullough’s proof doesn’t
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easily generalise to all n-holed domains. However, I’ve been able to extend
their proof to 2-or-more-holed domains with certain useful symmetries
([Pic08]). I’ll be talking some more about these symmetries a little later,
but for now, all I’m going to say is that all 2-holed domains have these
symmetries, so the two results are related.

1.5. Operators. Something I should quickly mention, is that not all of the
research in this area has focused on the space X. There’s also been some
research into what kinds of operators will work too. For starters Misra,
Paulsen and Agler, between them, showed that if our operator, T, is a 2 × 2
matrix, then rational dilation holds – so no matter how badly behaved X
is, if T is a 2 × 2 matrix, and X is a spectral set for T, then T has a rational
∂X-dilation. On the other hand, as I mentioned before, Agler, Harland and
Raphael’s couterexample is a 4 × 4 matrix, so clearly rational dilation can’t
hold on all 4 × 4 matrices. At the moment, we don’t know about 3 × 3
matrices, although in [AHR08], the authors conjecture that rational dilation
does hold for all 3 × 3 matrices, based on numerical evidence, although – so
far as I know – there’s no rigourous proof. You can find out more about this
approach in [AHR08].

The holy grail in this field, is to find a simple description of which oper-
ators have a rational ∂X-dilation, but I think we’re quite a long way from
being able to do this.

2. T 

Now, although this talk is about the result in [Pic08], I’m taking a different
approach to the one I take there. The approach I’m taking here is based on
generalised Herglotz representations. It should be more illustrative, and is
closely related to the approach I take in the paper, but I can’t promise it’s
right.

For the construction I use, X needs to be conformally equivalent to a
domain which is symmetric about the real axis. Having said that though,
it’ll make the calculations look simpler to just assume X is symmetric about
the real axis – rather than just conformally equivalent to something that is
– so I’m going to make this assumption. See figure 2.1 on the next page for
an example of such a domain.

2.1. Agler-Herglotz Representations. I said I’d be talking about gener-
alised Herglotz representations. The classical Herglotz representation the-
orem is a theorem about functions on the disc (although it’s sometimes
stated for half planes). It goes as follows:
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F 2.1. An example of a symmetric domain

Theorem. 1 is a positive harmonic function onD, if and only if there is a positive
measure µ on T such that

1(z) =

∫
T
Pw(z)dµ(w) ,

where P is the Poisson kernel.

We can write this in an equivalent way for holomorphic functions:

Corollary. f is a holomorphic function onD, with positive real part, and f (0) > 0,
if and only if there is a positive measure µ on T such that

f (z) =

∫
T

hw(z)dµ(w) ,

where h is the Herglotz kernel.

Here, the theorem essentially follow from Dirichlet’s principle (the mea-
sure µ is the “boundary value” of f in some sense), and the corollary follow
from the fact that on simply connected spaces, harmonic functions are the real
parts of holomorphic functions.

This isn’t quite what we want. We’re working in a space X, so we want a
Herglotz-like representation on X, rather thanD (I call these representations
Agler-Herglotz representations).

On X, the Dirichlet principle still holds, and we have a representation
like the first one:

Theorem. 1 is a positive harmonic function on X, if and only if there is a positive
measure µ on ∂X such that

1(z) =

∫
∂X
Pw(z)dµ(w) ,

where P is the Poisson kernel.

However, as it is, the corollary doesn’t quite hold. The problem is, that
not all positive harmonic functions correspond to holomorphic functions
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(think about something like log |z| on the annulus. It’s a perfectly good
harmonic function, but it’s the real part of log(z), which is not a single-
valued holomorphic function).

We can get round this, though. If our harmonic function 1 is the real
part of a holomorphic function, then we’re done. The question is, which
measures µ correspond to holomorphic functions?

For reasons that are too complicated to discuss here, a necessary condition
for µ to correspond to a holomorphic function, is that it must be non-zero
on each component of ∂X (we have a better condition, that’s necessary and
sufficient, but it’s complicated). So, measures have to touch each boundary
component (we call them B0, . . ., Bn).

We also know that holomorphic measures form a cone, so we can add
them together. This means, if we can find a set of simple “building block”
measures, we can build all other measures out of them. The simplest
measure that’s supported on at least one point in each point of B0, . . ., Bn, is
the measure that’s supported at exactly one point in each of B0, . . ., Bn. So,
for each point in P = B0 × · · · × Bn (i.e, for each tuple of points from B0, . . .,
Bn), we have a measure µp, and a corresponding holomorphic function hp.

These simplest functions hp are also “extremal”, in the sense of Krein-
Milman, or Choquet, so we can indeed build all holomorphic functions as
a combination of them. This gives us an Agler-Herglotz representation:

Corollary. f is a holomorphic function on X, with positive real part, and f (0) > 0,
if and only if there is a positive measure µ on P such that

f (z) =

∫
P

hw(z)dµ(w) .

The real reason this is interesting though, is hp. We can break down hp

into h0
p + h1

p + · · · + hn
p , where µi

p is a point mass at pi, so µ1
p is a point mass

at p1, µ2
p is a point mass at p2, etc. I’ll be using these hi

ps to construct our
counterexample.

2.2. Matrix-Valued Agler-Herglotz representations. It turns out that we
can also define a Matrix-Valued analogue of the Agler-Herglotz represen-
tation, provided rational dilation holds on our set X.

Suppose we have a positive matrix-valued holomorphic function F :
X→Mn. So long as (<F) (T) ≥ 0 for all X-spectral operators T, we have an
Agler-Herglotz like representation:

Fi j(z) =

∫
P

hw(z)dµi j(w) .

for some positive, matrix-valued measure
(
µi j

)
.

But now think of the contrapositive. If we have an F with no such
representation, then there must be some X-spectral operator T, such that



8 JAMES PICKERING

(<F) (T) � 0. This is a problem, as (<F) (T) = π̃n(<F), so this would mean
that π̃ was not completely positive.

This would give a counterexample to rational dilation

2.3. The counterexample. So, how do we construct our counterexample?
First, let’s look at a nice holomorphic function, if we define

Hp =

 h0
p 0

0 h0
p

 +

 h1
p 0

0 h1
p

 + · · · +

 hn
p 0

0 hn
p

 =

(
hµp 0
0 hµp

)
then this is a harmonic function, and it’s the real part of a holomorphic
function. It has a perfectly good matrix Agler-Herglotz representation, as

we can take µ =
(
µp 0
0 µp

)
.

So, how do we break it? We do something like this:

H̃p =

 h0
p 0

0 h0
p

 + U∗1

 h1
p 0

0 h1
p

 U1 + · · · + U∗n

 hn
p 0

0 hn
p

 Un

for some unitary matrices U1, . . . , Un. We can choose p, and our unitaries
carefully, so that it’s not possible to give this an Agler-Herglotz representa-
tion – its terms have been “twisted”. Therefore, rational dilation fails on X,
for any suitably symmetric X.
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